ALMA telescope unveils rapid formation of new stars in distant galaxies

Galaxies forming stars at extreme rates nine billion years ago were more efficient than average galaxies today, researchers find.

The majority of galaxies have been believed to lie on a “main sequence”, where the larger a galaxy’s mass, the higher its efficiency to form new stars. However, every now and then a galaxy will display a burst of newly-formed stars that shine brighter than the rest. A collision between two large galaxies is usually the cause of such starburst phases, where the cold gas residing in the giant molecular clouds becomes the fuel for sustaining such high rates of star formation.

Figure 1
Click to enlarge (jpg)

Figure 1. An example of colliding galaxies in starburst phase.
Credit: NASA, ESA, the Hubble Heritage Team (STScI/AURA)-ESA/Hubble Collaboration and A. Evans (University of Virginia, Charlottesville/NRAO/Stony Brook University)

The question astronomers have been asking is whether such starbursts in the early universe were the result of having an overabundant gas supply, or whether galaxies converted gas more efficiently.

A new study to be published in Astrophysical Journal letters on Oct. 15, lead by John Silverman at the Kavli Institute for the Physics and Mathematics of the Universe, studied carbon monoxide (CO) gas content in seven starburst galaxies far away from when the Universe was a young four billion years old. This was feasible by the advent of Atacama Large Millimeter Array (ALMA), located on a mountaintop plateau in Chile, which works in tandem to detect electromagnetic waves at a wavelength range in the millimeter (pivotal for studying molecular gas) and a sensitivity level that is just starting to be explored by astronomers today.

The researchers found the amount of CO-emitting gas was already diminished even though the galaxy continued to form stars at high rates. These observations are similar to those recorded for starburst galaxies near Earth today, but the amount of gas depletion was not quite as rapid as expected. This led researchers to conclude there might be a continuous increase in the efficiency depending on how high above the rate of forming stars is from the main sequence.

This study relied on a variety of powerful telescopes available through the COSMOS survey. Only the Spitzer and Herschel Observatories could measure accurate rates of star formation, and the Subaru Telescope could confirm the nature and distance of these extreme galaxies using spectroscopy.

John Silverman’s comment
“These observations clearly demonstrate ALMA’s unique capability to measure with ease a critical component of high redshift galaxies thus indicative of the remarkable results to come from ALMA.”

Figure 2
Click to enlarge (png)

Figure 2. Left: Map of the galaxy PACS-867 taken by ALMA where the emission from
carbon monoxide (CO) shows the molecular gas reservoir out of which stars form.
Center: Image taken by the Hubble Space Telescope Advanced Camera for Surveys of PACS-867 that shows the rest-frame UV light from young stars in the individual components of highly disturbed galaxies as a result of a massive merger. The location of the molecular gas in Left image is overlaid (blue contours) that shows where new stars, enshrouded by dust, are forming.
Right: Spitzer Space Telescope infrared image (3.6 micron) of PACS-867 highlights the stars embedded in dust and associated with the molecular gas.
Left image credit: ALMA (ESO/NAOJ/NRAO), J. Silverman (Kavli IPMU), Center image credit: NASA/ESA Hubble Space Telescope, ALMA (ESO/NAOJ/NRAO), J. Silverman (Kavli IPMU), Right image credit: NASA/Spitzer Space Telescope, ALMA (ESO/NAOJ/NRAO), J. Silverman (Kavli IPMU)

Paper

This observation result was published Silverman et al. “A higher efficiency of converting gas to stars pushes galaxies at z~1.6 well-above the star-forming main sequence” in the Astrophysical Journal Letters, issued in October 2015.

ALMA

ALMA array from the air
Click to Enlarge
ALMA array from the air
Credit: Clem & Adri Bacri-Normier (wingsforscience.com)/ESO
The Atacama Large Millimeter/submillimeter Array (ALMA), an international astronomy facility, is a partnership of the European Organisation for Astronomical Research in the Southern Hemisphere (ESO), the U.S. National Science Foundation (NSF) and the National Institutes of Natural Sciences (NINS) of Japan in cooperation with the Republic of Chile. ALMA is funded by ESO on behalf of its Member States, by NSF in cooperation with the National Research Council of Canada (NRC) and the National Science Council of Taiwan (NSC) and by NINS in cooperation with the Academia Sinica (AS) in Taiwan and the Korea Astronomy and Space Science Institute (KASI).
ALMA construction and operations are led by ESO on behalf of its Member States; by the National Radio Astronomy Observatory (NRAO), managed by Associated Universities, Inc. (AUI), on behalf of North America; and by the National Astronomical Observatory of Japan (NAOJ) on behalf of East Asia. The Joint ALMA Observatory (JAO) provides the unified leadership and management of the construction, commissioning and operation of ALMA.

NEW ARTICLES